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Abstract
From a logic programming point of view, the stable model semantics for normal programs has the
problem that logical consequences of programs cannot, in general, be stored as lemmas. This is
because the set of stable models of the resulting program may change. In fact, logical consequence
under the stable model semantics does not enjoy an important property required of non–monotonic
entailment relations, i.e. cumulativity. We argue that it is possible to assert a conclusion A as a
lemma in the stable model semantics, if asserting at the same time a set of facts supporting the
conclusion (that we call a base set for A). The effect on the meaning of the program is that of
selecting some of the stable models containing A. The collection of all base sets for A generates
all the stable models containing A. We formalize this intuition by reformulating the definition of
cumulativity accordingly. We propose a characterization of base sets that identifies the minimal
ones, i.e. the fewest and smallest base sets for A. Any proof procedure for the stable model
semantics (including the abductive ones) should be able, with slight modifications, to return the
base sets, by applying the criteria that we propose.



1 Introduction

The stable model semantics [10], originated from the work on autoepistemic logic [9],
appears presently as the main proposal for dealing with reasoning by cases, multiple
alternative situations, and abduction.

Stable models do not exist for all normal programs, and are in general not unique. The
definition of stable models is not constructive, and involves a generate–and–test process.
In fact, verifying the existence of a stable model is NP–complete (see [11] and the references
therein). Nevertheless, there have been several proposals for stable model computation
(see [2] and the references therein, and [3]), whose major issue is to riduce the search space
and to avoid expensive guessing as far as possible.

The motivations of this paper are as follows. From a logic programming point of view,
the stable model semantics has an important drawback: if a given fact is a consequence of
a program w.r.t. the stable model semantics, it is in general not possible to store it as a
lemma. In fact, as it is well–known, the set of stable models of the resulting program may
change, even for programs with a unique stable model, like for instance the following.
q : −not r.
r : −not q.
p : −not p.
p : −not r.

This program P has the unique stable model {p, q}. Even though p is a consequence
of P, its addition to the program alters the semantics, since the resulting program has the
two stable models {p, q} and {p, r}.

The problem has been formalized in [5] [6], [7], where it is shown that logical conse-
quence under the stable model semantics does not enjoy an important property required
of non–monotonic entailment relations, i.e. cumulativity.

We may notice however that, on the basis of autoepistemic logic, the stable models
represent coherent sets of beliefs that can be derived from themselves. Inconsistencies do
not arise because facts in a stable model are supported by other facts, that we can see
as hypotheses. In the example, p is supported by q (or, symmetrically, by not r), since
the clause p : −not p is contradictory. In fact, if we add both p and q as facts, (or,
symmetrically, we add p and cancel the premise not r from every clause where it occurs,
which means that we assume not r as true), then it is easy to see that the stable model of
the resulting program is unchanged, i.e. it is still {p, q}.

A similar intuition underlies the formulation of negation–as–failure as abduction [8]
where every conclusion is considered to be supported, w.r.t. each stable model, by a set
of negative facts, that is considered as the abductive explanation of the conclusion.

The main contributions of this paper are twofold. In the first part of the paper, we
assume that it is possible to assert a conclusion A as a lemma in the stable model semantics,
if at the same time a set of facts supporting the conclusion (that we call a base set for A)
is also asserted. In our view, the effect on the meaning of the program should be that of
selecting some of the stable models containing A. In fact, A may have in principle several
base sets (at most as many as the stable models to which A belongs), or even none. We
also argue that, actually, not every atom in a stable model needs base sets, but only those
involved in some odd cycle (cycle involving an odd number of negative dependencies).
We formalize this intuition by reformulating the definition of cumulativity accordingly,
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in both a weak and a strong form (we call the new property extended cumulativity). In
the strong form, it is required that, if considering all the base sets for A, all the stable
models entailing A are obtained. As a main difference w.r.t. [5], [6], [7], we propose a
concept of cumulativity suitable for the case where there are several stable models or,
more generally, for any semantics which is not based on a unique model. In the above
papers instead, there is the explicit intended restriction to semantic approaches based on
a unique model. At this point, it is easy to show that the stable model semantics enjoys
extended cumulativity in the strong form. In fact, the sets of abductive explanations are
base sets for A, although in general they are quite redundant.

In the second part of the paper, we propose a characterization of the base sets, aimed at
identifying the minimal ones. This characterization is intended to be of practical usability,
since any proof procedure for the stable model semantics (including the abductive ones)
should be able, with slight modifications, to return the support sets, by applying the
criteria that we propose. Preliminarly, we have to introduce a novel representation for
the syntactic structure of a program, that makes explicit the existing cycles, and their
connections. This is because the dependency graph, which is usually adopted for studying
properties of programs, is not suitable w.r.t. the stable models semantics, since there are
programs with the same dependency graph, but different stable models. On the basis
of this representation, from the structure of the program we are able to identify very
restricted base sets for a given atom A. We characterize the minimal ones, in the sense
that it does not exist any other collection consisting of fewer and smaller base sets for A.

2 Preliminary Definitions and Observations

In this paper we consider normal logic programs, i.e. Horn-clause programs with negation.
As basic references for semantics of normal logic programs we take [1] and [12], which
contain a systematic description and comparison of the various proposed semantics, and
where the reader can find all the original references corresponding to the definitions that
we report below.

Clauses in a normal program have an atom as conclusion, and a conjunction of literals
as conditions, where a literal is either an atom (positive literal) or the negation of an
atom (negative literal). We assume that the order of literals in the conditions of clauses
is irrelevant. When saying ”a program” we mean (unless explicitly specified differently) a
normal program. In the following, let P be a program. Negation is indicated by not. We
consider Herbrand interpretations and Herbrand models only. Since an Herbrand inter-
pretation is a model of a program P if and only if it is a model of its ground instantiation,
we will assume that every program P has already been instantiated. By HP and BP we
indicate respectively the Herbrand Universe and the Herbrand Base of P . Let also be
Bext

P = BP ∪ {not A : A ∈ BP }, i.e. the set af all positive and negative literals that can
be built from the alphabet of P .

The dependency graph DP for P is a directed graph with signed edges, whose nodes
are the atoms which occur in P . Given a clause in P of the form
A : −B1, . . . , Bn, not C1, . . . , not Cm, n, m ≥ 0,
DP contains n positive edges, namely (A,Bi), i ≤ n, and m negative edges, namely (A,Cj),
j ≤ m. We say that A depends positively (resp. negatively) on B if there is a path in DP
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from A to B with only positive edges (resp. at least one negative edge). We say that A
depends evenly (resp. oddly) on B if there is a path in DP from A to B with an even (resp.
odd) number of negative edges. P is called call–consistent if no relation depends oddly on
itself. A local stratification for P is a function S from BP to the countable ordinals, which
is extended to the negative literals not A, A ∈ BP , by assuming that S(not A) = S(A)+1.
P is called locally stratified if there exists a local stratification S for P such that for every
clause A : −Conds in P , and for every literal L occurring in Conds, S(A) ≥ S(L).

A program P may have in general several stable models [10], defined as follows, which
are among the minimal models of P .

(The Gelfond–Lifschitz Operator). Let I be a 2-valued interpretation of P . A GL-
transformation of P modulo I is a new program P/I obtained from P by performing the
following two reductions:

1. removing from P all clauses which contain a negative premise notA such that notA
is false in I (equivalently, A ∈ I);

2. removing from the remaining clauses those negative premises notA such that notA
is true in I (equivalently, A 6∈ I).

P/I is clearly a positive Horn-clause program, with least Herbrand Model J . Let Γ(I) = J .
A 2-valued interpretation I of P is called a Stable Model of P if Γ(I) = I.

The stable model semantics (SMS for short) defines the meaning of P as the set of
its stable models. If P is locally stratified, than it has a unique stable model. If P is
call–consistent, than it has stable models.

The well–founded model WFMP = 〈T (P );F (P )〉 of P [14] is unique, and is in general
3-valued. T (P ) ⊆ BP is the set of atoms which are true w.r.t. the WFM , F (P ) ⊆ BP

the set of atoms which are false. All atoms belonging to U(P ) = BP − (T (P ) ∪ F (P )),
have truth value undefined. Whenever WFM of P is total (i.e. two-valued) it coincides
with the unique stable model of the program, and P is called effectively stratified; local
stratification is a special case of effective stratification. Notice however that there are
programs with a unique stable model, but a three-valued WFM . In any case, all stable
models of a program extend its WFM , since for every stable model M of P , T (P ) ⊆ M
and M ⊆ T (P ) ∪ U(P ).

Consequently, the relevant information about the stable models of programs that are
not effectively stratified is limited to (a subset of) the clauses whose conclusion is undefined
in WFMP [3] [13]. Let us consider a subprogram of P , obtained by canceling from P all
clauses with conclusion true/false in WFMP , and all clauses with conclusion undefined
and at least one of the conditions false in WFMP . Let us also assume to cancel from
every clause of this subprogram all the literals which are true in WFMP , and call PU
the resulting program. Let PU^ be the unfolded version of PU, where negative dependen-
cies become explicit. I.e., PU^ is the (possibly infinite) program obtained by repeatedly
substituting, in all possible ways, every positive literal in the conditions of each clause
with the conditions of the clauses where it occurs as the conclusion. Let us select the
(finite, possibly empty) subprogram P* of PU^, composed of all clauses without positive
conditions.

For the sake of simplicity and without loss of generality, in the rest of this paper,
when mentioning a program P , we implicitly refer to its reduced version P*. In fact, as
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will be easily seen, we claim that all the reasoning performed in the following sections on
P* could be similarly performed on the original program P , at the expense of additional
complications due to considering positive and acyclic dependencies.

2.1 Dividing a Program into Cycles

The dependency graph is not a suitable representation of a program for investigating
about its SMS [4]. In fact, there are programs that have the same dependency graph, but
different sets of stable models. Therefore, in [4] a different representation for the syntactic
structure of a program is introduced, that makes explicit the cycles in the program and
the different kinds of connections between them.

In the definitions below, let P be a program, let {a, a1, . . . , an} ⊆ BP , n ≥ 1, let the
Bi’s, Bih ’s, Di’s, D and E be (possibly empty) conjunctions of negative literals. Given
positive integers g and m, by g mod m we mean the remainder of the integer division of g
by m.

Definition 2.1 A cyclic set of clauses CS is a set of clauses of the form:
a1 : −not a2, B1.
a2 : −not a3, B2.
...
an : −not a1, Bn.

More precisely, a clause composing a cyclic set is of the form:
ai : −not a(i+1) mod n, Bi.
where 1 ≤ i ≤ n, n ≥ 2.
We admit the special case of a single–clause cyclic set of the form:
a1 : −not a1, B1.

We also admit the special case where for each of the ai’s, i ≤ n, there are h clauses,
h > 1, of the form:
ai : −not a(i+1) mod n, Bih .

We say that C consists of {a1, . . . , an} or that it contains the ai’s, which belong to it; the
composing clauses are in, or belong to, C, which contains them. We say that a cyclic set
C is even (resp. odd) if n is even (resp. odd).

Notice that it is not required that the Bj ’s (and the Bih ’s) do not contain the ai’s.
Also, notice that the same clause may belong to more then one cyclic set.

Definition 2.2 Let CS be a cyclic set of clauses. We call auxiliary clause of CS a clause,
say K, of the form:
ai : −D.
where: ai belongs to CS; and K is not in CS.

Definition 2.3 We call isolated clause a clause of the form:
a : −E.
which does not belong to any cyclic set, and is not auxiliary to any cyclic set.
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Notice that an isolated clause is not supposed to have auxiliary clauses. I.e., there may
be several isolated clauses with the same conclusion, but they are seen as unrelated. It is
convenient to consider an isolated clause as a special case of a cycle.

Definition 2.4 A cycle C is either a cyclic set of clauses (proper cycle), or an isolated
clause. For a proper cycle, the auxiliary clauses are those of the cyclic set it consists of.

Definition 2.5 Let C be a cycle. For every clause K in C, of the form:
ai : −not ai+1, Bi.
Bi is called an AND handle of K; by the definition of a cycle, Bi may be empty. The
literal not ai+1 is called the main condition. In the special case of isolated clauses, the
main condition is empty. For every auxiliary clause X of C, of the form:
ai : −D.
D is called an OR handle of X. With respect to the whole cycle, the Bi’s are called the
AND handles of C, and the D’s the OR handles. We say that the composing literals
belong to or occur in the handle. Let {D1, . . . , Dr}, r ≥ 0, be the (possibly empty) set of
the OR handles of C. We call HC the (possibly empty) set of all the handles of C, namely
{B1, . . . , Bn, D1, . . . , Dr}

We say that a cycle C has an AND (resp. OR) handle if at least one of the Bi’s, i ≤ n
(resp. Dj ’s, j ≤ r) is nonempty. More generally, we say that a cycle C is unconstrained
(resp. constrained) if its set of handles HC is empty (resp.nonempty).

Given clause K in cycle C, of the form:
ai : −not ai+1, Bi.
if i is even (resp. odd) then, w.r.t. C, K is called an even (resp. odd) clause, ai an even
(resp. odd) atom, and Bi an even (resp. odd) handle.

It is easy to see that a program P can be partitioned in a unique way into a set of
cycles {C1, . . . , Ck}, k ≥ 1, each with its auxiliary clauses.

In [4] the relationship between this partition and the existence of stable models is widely
discussed. In this paper, the decomposition into cycles will be useful for identifying the
base sets.

3 Properties of the Stable Model Semantics

It is useful to classify the various semantics of non-monotonic formalisms on the basis of
the relevant structural properties that a nonmonotonic entailment relation should satisfy.
This approach has been applied to logic programming in [5], [6], [7].

One main such property is cumulativity (CM for short), according to which an entail-
ment relation (|=) defined by a logic programming semantics should satisfy, given a normal
program P , the condition

IfP |= A thenP |= B iff P ∪A |= B

It is well–known that SMS violates this property, even for programs with a unique
stable model. This means that if we store the conclusion A as a lemma, we run the risk
of modifying the set of consequences of the original theory.
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We will argue that the property is to be violated because atoms belonging to stable
models are by no means independent of the hypotheses supporting them. Then, in order
to assert A, we also have to assert a set H(A) of hypotheses supporting A, as follows.

Definition 3.1 (S–Reduction) Let A ∈ BP , H(A) ⊆ Bext
P .

An S–Reduction of P w.r.t. A and H
is a new program P∪H(A)(A) obtained from P by adding both A and every positive literal
B ∈ H(A) as unit clauses, and removing from the clauses of P those negative premises
notC ∈ H(A).

Differently from [5], [6], [7], we take the position of accepting as reasonable semantics
also those semantics which possibly associate a program with several intended interpre-
tations (like of course SMS), that we call multimodel semantics. Thus, for the notion of
entailment w.r.t. a multimodel semantics S, we take the credulous position, stating that
A is a consequence of a program P w. r. t. a semantics S if A belongs to some of the
intended interpretations of P under S. That is, if A ∈ BP , and M(P ) is the set of the
intended interpretations of P given by S, P |=SA iff ∃I ∈ M(P ) such that A ∈ I. Let
MA(P ) be the set of those intended interpretations of P which contain the atom A. By
abuse of notation, we will say that A is true in P w.r.t. S if P |=SA.

Assume to assert as a lemma an atom A belonging to one of the intended interpretations
of P under S. The effect, in our view, should simply correspond to restricting the meaning
of P to those intended interpretations of P containing A. This is done, as argued above,
at the condition of asserting also a suitable base set for A.

Then, we propose the following reformulation of the property of cumulativity, and we
call the new property ”Extended Cumulativity” (ECM).

Definition 3.2 (Condition for Weak ECM of a semantics S)
Let M ∈ M(P ) under S, and let A ∈ M . There exists a set H(A) ⊆ Bext

P such that
M(P∪H(A)(A)) ⊆ MA(P ).
The set H(A) is called a base set for A.

If S produces a single intended interpretation, then the above definition reduces to a
revision of the original definition.

We say that H(A) selects the set of interpretations M(P∪H(A)(A)). That is, we say
that a semantic S is cumulative if, for any given intended interpretation M of P under
S, and for any A in M , it is possible to find a set of literals H(A) which supports A in
M . I.e., performing an S–reduction of P modulo A and H(A) corresponds to selecting a
subset of the intended interpretations containing A. The motivation of this weak condition
is that the atom A may have several base sets, as shown by the following example.

Example 3.1 Consider the following program P.
q:-not r.
r:- not q.
a:-not b.
b:- not a.
p:- not p.
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p:- not a.
p:- not r.
P has the stable models {p, q, a}, {p, q, b}, {b, p, r}. Both H1 = {b} and H2 = {q} are
base sets for p (or, symmetrically, we can consider {not a} and {not r}). According to the
definition of weak CM, H1 selects the models {p, q, b} and {b, p, r},while H2 selects the
models {p, q, a} and {p, q, b}. Notice that the union of the set of models selected by H1

with the set of models selected by H2 gives the whole set of stable models of P .

We can formulate a strong version of ECM, requiring exactly that the union of the set
of intended interpretations selected by the different base sets corresponds to the whole set
of intended interpretations, according to the given semantics. Formally, we can give the
following definition.

Definition 3.3 (Condition for Strong ECM of a semantics S)
Let M ∈ M(P ) under S, and let A ∈ M . There exist sets H1(A), . . . ,Hn(A), Hi(A) ⊆
Bext

P , i ≤ n, such that⋃
i=1,...,nM(P∪H(A)(A)) = MA(P ).

If a semantics enjoys strong ECM, we call a collection of base set complete if it is able
to select, according to the definition, all the stable models containing A.

The question now is whether the stable model semantics enjoys ECM. The answer, as
suggested by the examples, is positive, for ECM in the strong form.

In the following, let A be true in P w.r.t. SMS. Notice that this assumption must be
based on the assumption of having some proof procedure for the stable model semantics
(see for instance [2]). With respect to each of the stable models to which it belongs, A
will be supported by a base set, that characterizes A w.r.t. that particular model.

If A is true in the well–founded model of the program, then A has always an empty
base set, since A belongs to every stable model, and thus does not need to be supported
by any hypotheses. Then, as mentioned in Section 2, we refer to the reduced version of
the program which contains all atoms that are undefined in the well–founded model.

If A belongs to some even cycle, then it has an empty base set, since (see [4] for a
discussion) the existence of stable models of even cycles does not depend on the rest of
the program (at most, some of the models can be excluded). Then, the problem of finding
the base sets concerns only those atoms that do not belong to any even cycle.

Since we assume A to be true w.r.t. SMS, in order to find the base set of A, we can
consider (in the terminology of [5], [6], [7]) the subprogram P(A) = rel rul(P,A), consisting
of all rules that could contribute to A’s derivability, i.e. the set of rules concerning all
atoms on which A depends (positively/ negatively, directly/ undirectly).

If instead we should establish whether A is true/false, then we should consider a wider
subprogram, since SMS does not satisfy relevance, i.e. it is not true that the truth value
of A in P is equal to the truth value of A in P(A). This is for two reasons. First, in some
cases P(A) has stable models, while P has none. Second, A could be derivable in P(A),
but not derivable in P, since its truth would make P inconsistent.

Let S(A)1, . . . , S(A)k, k ≥ 0, be the stable models for P (A) containing A. Let S(A)i
− =

{B : B ∈ U(P )− S(A)i}, i ≤ k be the negative counterpart of the S(A)i’s, containing, for
i ≤ k, the negation of every atom which is undefined in the well-founded model but does
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not belong to S(A)i. The S(A)i
−’s, that are exactly the abductive explanations for A in

P (A), are candidate base sets for A. In fact, they must be checked for consistency w.r.t
P–P(A), for the reasons shown in the following example.

Example 3.2 Consider the program in Example 3.1, and assume to add the clause:
g : −not g, not a

The resulting program has the unique stable model {a, p, q}. In fact, a must be true in
order to make g false. Otherwise, the new clause would be equivalent to the uncoherent
clause g : −not g. Then, {b} is no longer a base set for p. From P(p), alone, which
coincides with the clauses of the previous program, we are not able to detect this situation.

In general, there may be a problem if some atom D in a base set BS occurs in the
handle of some clause K of a cycle C which is not in P(A). In this case, for every such
clause, it is necessary to perform the following
Coherency check
Consider the conclusion G of K. Find the truth value of G in P (by means of a proof
procedure whatsoever). Assuming the truth value of D in BS, check that the truth value of
G is still the same. Discard BS if it is not.

After the consistency check on the S(A)−i ’s, let BS(A)1, . . . , BS(A)m, m > 0, be the
remaining sets.

Proposition 3.1 The sets BS(A)r, r ≤ m, form a complete collection of base sets for A.

In fact, it is easy to see that every stable model containing A is selected by some of
the BS(A)r’s. Therefore, SMS enjoys ECM in the strong form, and the sets of coherent
abductive hypotheses form a complete collection of base sets.

In the next section we will show however that it is possible to identify a complete
collection of fewer and smaller base sets.

4 Finding a Minimal Complete Collection of Base Sets

Consider an atom A, that we assume to be true w.r.t. SMS. It is useful to make explicit,
in terms of cycles and handles, what are the necessary and sufficient conditions for an
atom to be true or false w.r.t. SMS.

First, notice that an handle is true (resp. false) iff every composing conjunct is true
(resp., if some of the composing conjuncts is false).

Let us consider a cycle, of the form:
a1 : −not a2, B1.
a2 : −not a3, B2.
...
an : −not a1, Bn.

For ai, i ≤ n, to be true by means of this cycle, there are two possibilities:

• there exists an auxiliary clause for ai, of the form ai : −B, and B is true.

• a(i+1)mod n is false, and the AND handle Bi is true. Notice that, if n = 1, then this
condition cannot hold, since the same atom a1 cannot be both true and false.
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Instead, for ai, i ≤ n, to be false, both the following conditions must hold:

• there exists no auxiliary clause for ai, of the form ai : −B, where B is true.

• either a(i+1)mod n is true, or the AND handle Bi is false. Notice that, if n = 1, then
the former cannot hold, since the same atom a1 cannot be both true and false.

There is a difference between an even and an odd cycle if the cycle is unconstrained.
In fact, an unbounded even cycle has always two stable models (one composed of the even
atoms, and one composed of the odd atoms), and then ai will be true in one of them.
Instead, an unconstrained odd cycle has no stable models: this means that, for an atom
to be true/false in an odd cycle, we must assume that the cycle is not unconstrained.

It is easy to see that A is true iff it is true by means of some of the cycles to which
it belongs. Conversely, A is false iff it is false in all the cycles to which it belongs. For a
discussion of the impact on truth/falsity of the interactions among cycles, see [4].

Below, we arrange clauses of P (A) (or, equivalently, the search space for A) into a
tree, so as to make the previous considerations formal, and thus be able to find the base
sets. The following preliminary definitions are in order.

We say that a cycle has an AND handle for A if A = ai, i ≤ n, and Bi is nonempty.
We say that a cycle has an OR handle for A if there exists an auxiliary clause A : −B.

Definition 4.1 Given a clause corresponding to an OR (resp. AND) handle of some
cycles, an OR (resp. AND)–restricted version of the clause is obtained by canceling all
conjuncts of the handle, except one.

Then, for every clause corresponding to an OR (resp. AND) handle, there are as many
OR(resp. AND)–restricted clauses, as there are conjuncts in the handle.

Definition 4.2 Given a cycle C, and an atom A, such that C has an OR handle for A,
an OR–restricted version of the cycle w.r.t A is obtained by canceling all the AND handles
in the composing clauses, and by canceling all the auxiliary clauses, except one with an
OR handle for A. This one is then substituted by an OR–restricted version of the clause
itself.

Definition 4.3 Given cycle C, and an atom A, such that C has an AND handle for A,
an AND–restricted version of the cycle w.r.t A is obtained by canceling all the auxiliary
clauses, and all the AND handles, except the one for A. This one is then substituted by
an AND–restricted version of the clause itself.

Clearly, there are several OR (resp. AND)–restricted versions of the same cycle, de-
pending on the number of handles and conjuncts. These definitions reflect the fact that, in
checking the truth/falsity of A, we can consider the handles one by one and the composing
conjuncts in turn one by one.

We will now define how to build a tree, called T–tree, to represent the conditions for
A to be true. The T–tree may have as subtree an F–tree, to represent the conditions
for some atom B to be false. The nodes of the tree have the following possible labels.
A:true, A:false, where A is the atom whose truth, or resp. falsity we want to represent.
alt, which indicates an alternative among different conditions. un, standing for ”union”,
which indicates the fact that a number of different conditions must hold together.
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Definition 4.4 (T–tree for A) The nodes of the T–tree can be labeled with B:true or
B:false, B ∈ BP , or with alt, or with un, or with a set of clauses (program node).
The T–tree has the following structure:

• The root, labeled with A:true, has a single child, labeled with alt, which has one child
for every cycle C containing A. If C is unconstrained, then the node corresponding
to C is a program node, labeled with the clauses of the cycle. Otherwise, the node is
labeled with alt, and has the following children, from left to right:

– node labeled with alt, which is the root of the OR–subtree;

– node labeled with un, which is the root of the AND–subtree.

• OR–subtree corresponding to a cycle C.
The root has as many children as the number of the OR handles for A, each one
corresponding to a clause A : −not B1, . . . , not Bn. Each child (corresponding to one
OR handle) is labeled with un, and has as many children, say OC1, . . . , OCk, as the
number of OR–restricted versions of C w.r.t. that handle, each with atom Bi, i ≤ k
as the remaining atom in the handle. Each OCi is labeled with the clauses of the
OR–restricted version, and has one child, which is the F–tree for Bi.

• AND–subtree corresponding to a cycle C.
Let A : −not B, not D1, . . . , not Dr be the clause CA with conclusion A in C. The
root has the following children:

– one child, omitted if A=B, labeled with the clauses of C, where however CA
is substituted by A : −B, which has in turn one child, i.e. the F–tree for B,
omitted if the resulting cycle is unbounded.

– as many children, say AC1, . . . , ACr, as the number of AND–restricted versions
of C w.r.t. the handle for A, each with atom Di, i ≤ r as the remaining atom in
the handle. Each ACi is labeled with the clauses of the AND–restricted version,
and has one child, which is the F–tree for Di.

Definition 4.5 (F–tree for A) The nodes of the F–tree can be labeled with B:false or
B:true, B ∈ BP , or with alt, or with un, or with a set of clauses (program node). The
F–tree has the following structure:

• The root, labeled with A:false, has a single child, labeled with un, which has one child
for every cycle C containing A. If C is unconstrained, then the node corresponding
to C is a program node, labeled with the clauses of the cycle. Otherwise, the node is
labeled with un, and has the following children, from left to right:

– node labeled with un, which is the root of the OR–subtree;

– node labeled with alt, which is the root of the AND–subtree.

• OR–subtree corresponding to a cycle C.
The root has as many children as the number of the OR handles for A, each one
corresponding to a clause A : −not B1, . . . , not Bn. Each child (corresponding to one
OR handle) is labeled with alt, and has as many children, say OC1, . . . , OCk, as the
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number of OR–restricted versions of C w.r.t. that handle, each with atom Bi, i ≤ k
as the remaining atom in the handle. Each OCi is labeled with the clauses of the
OR–restricted version, and has one child, which is the T–tree for Bi.

• AND–subtree corresponding to a cycle C.
Let A : −not B, not D1, . . . , not Dr be the clause CA with conclusion A in C. The
root has the following children:

– one child, omitted if A=B, labeled with the clauses of C, where however CA
is substituted by A : −B, which has in turn one child, i.e. the T–tree for B,
omitted if the resulting cycle is unbounded.

– as many children, say AC1, . . . , ACr, as the number of AND–restricted versions
of C w.r.t. the handle for A, each with atom Di, i ≤ r as the remaining atom in
the handle. Each ACi is labeled with the clauses of the AND–restricted version,
and has one child, which is the T–tree for Di.

After building the tree, it is convenient to cancel all the alt and un nodes without
children. In this way, all leaves are program nodes.

The T–tree for A consists, in summary, in a hierarchy of T–trees and F–trees, each
referring to the truth/falsity of an atom, and associated with a restricted cycle containing
that atom. Each tree at the bottom ends in a leaf of the whole tree. Assuming that there
are h bottom trees, let L1, . . . , Lh be the atoms to which they correspond, and K1, . . . ,Kh

the associated restricted cycles.
The union of all clauses of the program nodes occurring in a path from the root to

each Kj , j ≤ h, is a program, that we call SPj(A). Notice that every Kj must be an
unbounded even cycle. In fact, if the cycle is bounded, then the costruction of the tree
does not stop here. If it is odd and unbounded, then it means that P(A), and thus P, has
no stable models, which contradicts the hypothesis that A is true (the reader may refer to
[4] for a discussion of these topics).

Then, Kj , like every unconstrained even cycle, has two stable models M1
Kj

and M2
Kj

.
One of these two models makes the atom Lj true/false, as required. Let us associate this
model, say MLKj , with this leaf, and call it a base model. It is convenient, for now, to
represent MLKj as the set of literals true w.r.t. this model.

If adding to SPj(A), as facts, the atoms which occur positively in MLKj , SPj(A) may
become locally stratified, with A true in its unique stable model. Otherwise, it may be
the case that the resulting program has no stable model. In this case, it is necessary to
cancel MLKj , as well as any other base model of which MLKj is a subset.

Example 4.1 Consider the following program P.
p : −not p, not h.
p : −not a.
p : −not b.
h : −not h, not e.
e : −not f.
f : −not e.
a : −not b.
b : −not a.
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The program has the two stable models {e, a, p} and {e, b, p}. Let us consider atom p.
P (p) coincides with P. The abductive hypotheses for p are ∆1 = {not f, not b not h} and
∆2 = {not f, not a, not h}

The T–tree for p has the following structure:

• Root p:true, with child alt.

• OR–subtree: since there are two OR handles, the root (label alt) has two nodes, each
one (labeled with un) with only one child, which is respectively:

– program node
p : −not p.
p : −not a.
with a child which is the F–tree for a.

– program node
p : −not p.
p : −not b.
with a child which is the F–tree for b.

.

• AND–subtree: the root (label un) has only one child (the first one has been omitted),
i.e. the program node
p : −not p, not h.
with a child which is the F–tree for h.

The F–tree for h has the following structure:

• Root h:false, with child alt.

• OR–subtree: empty

• AND–subtree: the root (label alt) has only one child (the first one has been omitted),
i.e. the program node
h : −not h, not e.
with a child which is the F–tree for e.

The F–tree for a, b, and e has the following structure:
root a:false, b:false and e:false respectively, with child un and only one gradchild, i.e.
the program node
a : −not b.
b : −not a.
for a and b (let us call this cycle K1), and
e : −not f.
f : −not e.
for e. Let us call this cycle K2.

Let us consider the program SP2(p), corresponding to the path from the root to K2,
which is:
p : −not p, not h.
h : −not h, not e.
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e : −not f.
f : −not e.

The stable model MLK2 = {e, not f} makes h false, as required by the tree structure.
However, if e is added as a fact to SP2(p), the resulting program has no stable models.
Therefore, MLK2 must be excluded.

Finally, let us proceed bottom–up in the tree. This time, starting from the remaining
base models, we consider only the alt and un nodes. For every alt node, we keep separate
the sets coming from its subtrees. For every un node, we make the union of the sets
coming from its subtrees, in every combination, if some subtree conveys alternative sets.
Finally, we obtain the resulting sets RS1, . . . , RSn, n > 0.

Proposition 4.1 RS1, . . . , RSn, n > 0 is a complete collection of base sets for A in P(A).

RS1, . . . , RSn can be further reduced, by a simple check: if, for some atoms D,E, we
have that {D,not E} ∈ RSi, and {E,not D} ∈ RSj , i, j ≤ n, then D,E, not D, not E can
be canceled from both RSiandRSj . In fact, if a support set for A is obtained independently
of the truth value of DandE, then no assumption on them is really needed, as shown by
the following example.

Example 4.2 Consider the program of Example 4.1. It is easy to see that the resulting
sets for p are {a, not b} and {b, not a}. Then, any truth value for a and b can support p,
and then no assumption is needed. In fact, it is easy to see that the empty set is a support
set for p in P.

Example 4.3 Consider the following program P.

q : −not p.
p : −not p, not a.
a : −not b, not c.
b : −not a.
c : −not d.
d : −not c.

The unique stable model is {q, a, d}. The corresponding abductive hypothesis for q is
∆ = {not p, not b, not c}

The T–tree for q depends on the F-tree for p, which has the following structure.
Root p:false, with single child un, OR–subtree empty, and AND–subtree with first child
omitted, and second child which is the T–tree for a, with the following structure:
root a:true, OR–subtree empty, AND–subtree with root un and two children, the first one
corresponding to the program node
a : −not b.
b : −not a.
with no children, since this cycle is unbounded, and the second one corresponding to the
F–tree for c, depending on the program node:
c : −not d.
d : −not c.
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Then, the base models coming from the two leaves are {a, not b}and {d, not c} respec-
tively. Consequently, the unique base set for q is {a, d}.

Now, it is necessary to perform on the resulting sets the coherence test defined in the
previous section. At this point, we can choose to select either the positive or the negative
part of the remaining RSi’s, thus obtaining the final sets, BS1, . . . BSj , j ≥ 0.

Theorem 4.1 BS1, . . . BSj is a complete collection of base sets for A in P.

Theorem 4.2 BS1, . . . BSj is a minimal complete collection of base sets for A in P, in
the sense that there does not exist any complete collection consisting of fewer and fewer
and smaller sets.

5 Concluding Remarks

In this paper we have discussed the problem of lemma generation with respect to a mul-
timodel semantics, in particular with respect to the stable model semantics.

We have shown that criteria for storing conclusions as lemmas can be defined. However,
there is a main difference with respect to asserting lemmas in first–order–logic, or in logic
programming, with respect to a single–model semantics: the resulting program is not, in
general, equivalent to the original one.

In fact, while asserting a conclusion, a choice is made, and consequently some possi-
bilities are discarded. The particular choice is represented by the base set associated with
that conclusion, which in a sense represents the ”explanation” for that choice. The mean-
ing of the resulting program corresponds to a restriction of the meaning of the original
one.

We have noticed that the lemma generation problem for the stable model semantics
is related to abduction, since abductive hypotheses for a conclusion are base sets for that
conclusion. We have discussed however the possibility of finding smaller and fewer base
sets, only for that kind of conclusions that really need a support (in fact, we show that
atoms that are true in the well–founded model of the program, and atoms which belong
to some even cycle do not really need explanations).

However, what is the relationship among the lemma generation problem and topics
such as abduction, theory–revision and hypothetical reasoning remains to be explored,
and is a main future topic of this research.
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