
Checking Strong Equivalence with
Duplication-Free Tableaux?

A. Avellone1, S. Costantini2, G. Fiorino3, U. Moscato1 and A. Provetti4

1 Dipartimento di Metodi Quantitativi per l’Economia, Università
Milano-Bicocca,Piazza dell’Ateneo Nuovo, 1, 20126 Milano, Italy,

{alessandro.avellone,ugo.moscato}@unimib.it,
http://www.dimequant.unimib.it/

2 Dipartimento d’Informatica, Università di L’Aquila, via Vetoio Loc. Coppito,
L’Aquila I-67010 Italy, stefcost@di.univaq.it, http://costantini.di.univaq.it/

3 Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano,
Via Comelico 39, 20135 Milano, Italy,

fiorino@dsi.unimi.it
4 Dipartimento di Fisica, Università di Messina, Messina I-98166 Italy,

ale@unime.it, http://ale.unime.it/

Abstract. In Answer Set Programming, Lifschitz, Pearce and Valverde
have defined Strong equivalence as follows: Π1 and Π2 are strongly equiv-
alent if for every program Π, Π1 ∪ Π and Π2 ∪ Π are equivalent, i.e.,
have the same answer sets. A logical characterization of Strong Equiv-
alence is provided by the same authors via i) translation of programs
into a classical signature (creating, say, c(Π1) and c(Π2)) and check-
ing equivalence of so-obtained formulae w.r.t. to the Logic of Here-and-
There. Here-and-There is an intermediate logic only minimally weaker
than classical logic. Indeed Strong Equivalence can be checked with clas-
sical logic model checkers but only at the cost of introducing extra atoms.
We remain within Lifschitz et al. logical framework and describe an opti-
mal tableaux system for Here-and-There. Such Tableau is derived from a
similar, but weaker system introduced by some of the authors for modal
intuitionistic logic. Checking strong equivalence can therefore be done
in a very concise form without introducing extra atoms and without
duplications in proofs.

1 Introduction

Answer Set Programming (ASP) is a branch of Logic Programming based
on the Stable Models and Answer Sets declarative semantics of [9] and

? Work supported by i) MIUR COFIN project Aggregate- and number-reasoning for
computing: from decision algorithms to constraint programming with multisets, sets,
and maps and by ii) Information Society Technologies programme of the European
Commission, Future and Emerging Technologies under the IST-2001-37004 WASP
project.

[10]. Essentially, the answer sets semantics relates the negation-as failure
operator not to the notion of consistent assumption in Reiter’s default
logic.

Differently from standard Logic Programming, where program state-
ments designate properties of a first-class object which is to be computed,
Answer Sets Programming is based on the understanding of program
statements as constraints on a set of atoms that encode a solution to the
problem at hand. In general, a program may admit zero, one or more an-
swer sets (each one encodes an alternative solution). The reader may refer
to Marek and Truszczyński’s survey [13] for an introduction to ASP vis-
á-vis traditional Logic Programming and classical propositional logic. In
this article the standard definitions of (propositional) logic program (or,
equivalently, extensions of DATALOG) are assumed. Also, the standard
definitions of Well-founded [21], Stable [9] and Answer Sets semantics [10]
are assumed.

1.1 Introduction to Strong Equivalence

In their seminal work, Lifschitz et al. [12] have defined Strong Equivalence
(SE), argued for its importance and given a formal method by which
SE can be checked. The key points of their work can be summarized as
follows. First, Strong Equivalence is defined.

Definition 1. (from [12])
Programs Π1 is strongly equivalent to program Π2 if, for every program
Π, Π1 ∪Π is equivalent to Π2 ∪Π.

Second, the importance of strong equivalence from the point of view
of program development is argued for.

The study of strong equivalence is important because we learn
from it how one can simplify a part of a logic program without
looking at the rest of it. [ibid.]

On this issue, we would like to add that advances in Strong Equiv-
alence will enable the development of a Software Engineering of ASP,
based on safe combinations of program modules, which clearly helps in
writing a large program.

Finally, Lifschitz et al. provide a formal characterization of strongly
equivalent logic programs by means of the logic of Here-and-There (HT)
wherein [16] had characterized stable models by a distinct class of models
called equilibrium models.

Theorem 1. (rephrases Theorem 1 of [12])
Program Π1 is strongly equivalent to program Π2 if and only if they are
equivalent1 in the sense of HT logic.

As a result, strong equivalence can be checked by checking HT-equivalence,
which can be done, for instance, by means of Modal Tableaux theorem
provers.

Example 1. Programs
π1 = {p ← not p,not q. p ← q.} and π1 = {p ← not p. p ← q.} are

strongly equivalent. This fact is witnessed by the following HT theorem:

|=HT [(¬q ∧ ¬p→ p) ∧ (q → p)] ≡ [(¬p→ p) ∧ (q → p)]

Notice that the HT formula is extracted from π1 and π2 by simply
replacing the Logic Programming connectives with classical ones. The
Clark’s completion of programs is not used at all.

1.2 HT from the point of view of intermediate logic

In this paper we are interested in propositional Here-and-There Logic,
which can be axiomatized by adding to any axiom system for Intuitionistic
Logic Int the axiom schema

((¬q→p)→(((p→q)→p)→p))

Equivalently, HT may be axiomatized by adding to Int the two axiom-
schemes

((p→q) ∨ (q→p))

(p ∨ (p→q ∨ ¬q))

Clearly, in both cases adding all the possible instantiations of p and q
appearing in the schema may burden the theorem prover with several
scarcely-needed axioms. In the next Section we will show an alternative
characterization based on introducing truth-modalities (signs) as prefixes
to the formulae.
1 Logic programs are translated into HT formulae by replacing connectives with

their classical counterparts. In particular, Gelfond-Lifschitz’s←, which is not truth-
valued, gets substituted by the classical implication, denoted →.

2 Basic definitions

In this section we give notions and notation we will use in the rest of
the article. A detailed presentation of all notions regarding intermediate
logics and Kripke models can be found in [7] and [3].

Given a finite set2 of propositional variables (i.e., atoms) and the
connectives ¬,∧,∨, →, a well formed formula (wff for short) is defined
as usual. Given a wff A, we say that ¬A is a negated wff. We use the term
atom as synonym of propositional variable.

In the sequel Int denotes both an Hilbert-style calculus for Intuition-
istic Propositional Logic and the set of intuitionistically valid wffs.

A well known semantical characterization of HT is by Kripke models.
A Kripke model is a triple K = 〈P,≤,〉, where 〈P,≤〉 is a partial ordered
set and is the forcing relation, defined between elements of P and
propositional variables with the property that, for every Γ,∆ ∈ P such
that Γ ≤ ∆, and every propositional variable p, if Γ p then ∆ p.

We call root of K = 〈P,≤,〉 an element Υ (if it exists) such that,
for every Γ ∈ P, Υ ≤ Γ.

HT is semantically characterized by the class of rooted Kripke models
K = 〈P,≤,〉 such that |P | ≤ 2.

The forcing relation is extended to the wffs as follows:

– Γ A ∧B iff Γ A and Γ B;
– Γ A ∨B iff Γ A or Γ B;
– Γ A→ B iff, for every ∆ ∈ P such that Γ ≤ ∆, ∆ 6 A or ∆ B;
– Γ ¬A iff for every ∆ ∈ P such that Γ ≤ ∆, ∆ 6 A.

Starting from the definition above, it is easy to prove that if Γ A
and Γ ≤ ∆ then ∆ A.

Let Γ be a world of P and let A be a wff, if Γ A we say that A is
forced in Γ (or in a world of K). A wff A is valid in a model K = 〈P,≤,〉
if Γ A for all Γ ∈ P .

In Section 3 we present the tableau calculus T for HT given in [1],
whose object language is built on the set of signs {T,F,Fc,Tcl} and on
the set of wffs. Every member of the object language is a signed wff (swff
for short) whose syntax is SA, with S ∈ {T,F,Fc,Tcl} and A wff.

The length of a wff A (respectively swff SA), denoted by |A| (respec-
tively |SA|), is the number of symbols in A (respectively the number of
symbols in A plus one). The length of a set S of wffs or swffs, denoted by

2 Since ASP programs are finite, in this article we only need to assume the existence
of finitely many propositional variables (atoms).

|S|, is the sum of the lengths of its elements. Given two wffs or two swffs
A,B with A ≡ B we mean that A and B are syntactically identical.

Finally, we introduce a complexity measure for wff, swff and sets of
swff.

Definition 2. 1. The degree of a wff A, denoted by deg(A), is defined
as follows: if A is a propositional variable then deg(A) = 0; if A ≡
B → C, A ≡ B∧C or A ≡ B∨C then deg(A) = deg(B)+deg(C)+1,
if A ≡ ¬B then deg(A) = deg(B) + 1.

2. The degree of a swff SA, denoted by deg(SA), coincides with the
degree of A.

3. The degree of a set S of swffs, denoted by deg(S), is the sum of the
degrees of the swffs occurring in S.

3 The calculus for HT

The duplication-free tableau calculus for HT given in [1] uses the signs
T, F, Fc and Tcl. The meaning of these signs is explained in terms of
realizability as follows: given a model K = 〈P,≤,〉 and a swff H, we say
that an element β ∈ P realizes H, and we write β � H, if (according to
the structure of H) the following conditions hold:

– If H ≡ TA, then β A;
– If H ≡ FA, then β 6 A;
– If H ≡ FcA, then β ¬A;
– If H ≡ TclA, then β ¬¬A.

The calculus T consists of the rules in Table 1 and a set S is contradictory
if one of the following conditions holds:

– TA ∈ S and FA ∈ S;
– TA ∈ S and FcA ∈ S;
– TclA ∈ S and FcA ∈ S.

It is immediate to verify:

Proposition 1. If a set of swff’s is contradictory, then it is not realiz-
able.

A world Γ of a model K realizes a set S of swff’s (and we write Γ.S)
iff Γ realizes every swff in S. A set S of swff’s realizable iff there is a
world Γ of model K such that Γ.S.

S,T(A ∧B)

S,TA,TB
T∧

S,Tcl(A ∧B)

S,TclA,TclB
Tcl∧

S,T(A ∨B)

S,TA/S,TB
T∨

S,Tcl(A ∨B)

S,TclA/S,TclB
Tcl∨

S,T(A→B)

S,FA,TclB/S,TB/S,FcA
T→

S,Tcl(A→B)

S,TclB/S,FcA
Tcl→

S,T¬A

S,FcA
T¬

S,Tcl¬A

S,FcA
Tcl¬

S,F(A ∧B)

S,FA/S,FB
F∧

S,Fc(A ∧B)

S,FcA/S,FcB
Fc∧

S,F(A ∨B)

S,FA,FB
F∨

S,Fc(A ∨B)

S,FcA,FcB
Fc∨

S,F(A→B)

S,TA,FB / S,TclA,FcB
F→

S,Fc(A→B)

S,TclA,FcB
Fc→

S,F¬A

S,TclA
F¬

S,Fc¬A

S,TclA
Fc¬

Table 1. Tableau calculus for HT

3.1 Describing Proofs structure

A configuration is any finite sequence S1| . . . |Sn (with n ≥ 1), where
every Sj is a set of swff’s; a configuration is realizable iff at least a Sj is
realizable; we refer to Sj as an element of S1| . . . |Sn.

A proof table is a finite sequence of configurations C1, . . . , Cn, where
the configuration Ci+1 is obtained from Ci = S1| . . . |Sk by applying to each
non-contradictory element of Ci a rule of the calculus and taking every
contradictory element of Ci in Ci+1. Moreover, a proof table is closed iff all
the sets Sj in its final configuration are contradictory. Finally, the depth
of an proof table is the number of its configurations.

A proof of a wff B is a closed proof table starting from the configura-
tion {FB}.

A finite set of swff’s S is consistent iff no proof table starting from S
is closed.

Let H be an swff. We call extension(s) of H the set(s) R1
H , . . . ,Rn

H

(n ≥ 1) coinciding with the sets in the configuration obtained by applying
the rule related to H in T to the configuration {H}, i.e., the extensions
of the swff H ≡ T(A→ B) are the sets R1

H = {FA,TclB},R2
H = {TB}

and R3
H = {FcA}.

3.2 Soundness and Completeness results

It is easy to check that the rules of Table 1 preserve realizability, and
hence, using Proposition 1, the Soundness Theorem can be proved in the
usual way ([1]).

Theorem 2 (Soundness of T). If a proof table starting from a swff FA
is closed, then A ∈ HT.

The completeness proof is based (as usual) on a general method al-
lowing to build up models for consistent sets of swff’s. Given a consistent
set of swff’s S, we will construct a model KHT(S) on whose root the set
S will be realized.

Let A1, . . . , An be any listing of swff’s of S (without repetitions of
swff’s). Starting from this enumeration we construct the following se-
quence {Si}i∈ω of sets of swff’s.

– S0 = S;
– Let Si = {H1, . . . ,Hu}; then

Si+1 =
⋃

Hj∈Si

U(Hj , i),

where, setting

S
′
j = U(H1, i)

⋃
· · ·

⋃
U(Hj−1, i)

⋃
{Hj , . . . ,Hu}

where: U(Hj , i) is a extension RHj of Hj such that U(H1, i) ∪ · · · ∪
U(Hj−1, i) ∪ {Hj+1, . . . ,Hk, Ai+1, Ai+2, . . . } ∪ RHj is consistent.

Now, by induction on i ≥ 0, it is easy to prove that if S is consistent¸
then any Si is consistent¸ . Moreover, since S is finite there exists an index
j such that Si = Sj for any i ≥ j. Let u be the first index such that
Su = Su+1. We call Su the node set of S and we denote it with S. Moreover
we call {S0, . . . , Su} the sequence generating S.

Now, we define

Γ0 = {H ∈ S | H ≡ TA}
Γ1 = {H ∈ S | H ≡ TA or H ≡ TclA}

Given a consistent (and finite) set of swff’s S, we define a (finite)
structure K(S) = 〈P,≤,〉 as follows:

1. P = {Γ0, Γ1};
2. Γ0 ≤ Γ1 and Γi ≤ Γi for i ∈ {0, 1};
3. For any α ∈ P and for any propositional variable p, α p iff Tp ∈ α

or Tclp ∈ α.

We remark that, given a consistent set of swff’s S, in general we can build
different saturated sets for S, and hence we can build different models
K(S); however, all these structures are equivalent with respect to our
purpose. It is obvious that K(S) is a model.

Now, we prove the Fundamental Lemma for HT.

Lemma 1. Let S be a consistent set of swff’s and let K(S) = 〈P,≤,〉
be defined as above. For any swff H ∈ Si (0 ≤ i ≤ u), Γ0 � H in K(S).

Proof. The proof goes by induction on the degree of the swff H (Defini-
tion 2).

Basis: For deg(H) = 0 we have that H ≡ Sp with p a propositional
variable and, by construction, H ∈ Su. Now, if S ≡ T, Tp ∈ Si then, by
definition of K(S), Γ0 � H. If S ≡ F, since Su is consistent, Tp 6∈ Su and
hence Γ0�Fp by our definition of forcing. If S ≡ Fc, since Su is consistent
neither Tp nor Tclp belong to Su, hence Γ0 6 p and Γ1 6 p; this implies

Γ0 � Fcp. Finally, if S ≡ Tcl, then Tclp ∈ Γ1 and, by definition of the
forcing relation, we have that Γ1 p, that is Γ0 � Tclp.

Step: Now, let us assume that the assertion holds for any swff H ′ ∈ Si

with degree less than or equal to h and let us suppose that deg(H) = h+1.
The proof goes by cases, according to the form of the swff H. Here we
give only some illustrative examples.

Case H ≡ T(A ∧ B): T(A ∧ B) ∈ Si implies that there exists Sj ∈
{Si+1 . . . Su} such that {TA,TB} ⊆ Sj . Thus, we get, by the induction
hypothesis, that Γ0 A and Γ0 B, hence Γ0 A ∧ B which means
Γ0 � T(A ∧B).

Case H ≡ F(A→ B): F(A→ B) ∈ Si implies that there exists Sj ∈
{Si+1 . . . Su} such that either {TA,FB} ⊆ Sj or {TclA,FcB} ⊆ Sj .
In the first case, we get, by the induction hypothesis, that Γ0 A and
Γ0 6 B, hence Γ0 6 A → B. In the latter case, we get, by induction
hypothesis, Γ1 A and Γ1 6 B, therefore Γ0 6 A→ B which means
Γ0 � F(A→B).

Case H ≡ Tcl(A ∧ B): Tcl(A ∧ B) ∈ Si implies that there exists Sj ∈
{Si+1 . . . Su} such that {TclA,TclB} ⊆ Sj . Thus, we get, by the induc-
tion hypothesis, that Γ1 A and Γ1 B, hence Γ1 A∧B which means
Γ0 66 (A ∧B) therefore Γ0 � Tcl(A ∧B).

Completeness of the calculus follows from the Lemma above.

Theorem 3 (Completeness of T). If A ∈ HT, then there exists a
closed proof table starting from FA.

Proof: Suppose the assertion is not true. Then, {FA} is a consistent set
of swff’s. By Lemma 1 this implies that FA is -realizable and we get a
contradiction. 2

We remark that the function deg(H) is linearly bounded by the length
of H. Moreover, for every swff H, deg(Ri

H) ≤ deg(H) which implies that
the depth of every proof table is linearly bounded in the length of the
formula to be proved.

3.3 Complexity of the Tableaux method

As it is well-known, implication in HT logic takes exponential time in
general. More precisely, checking Strong Equivalence is a coNP -complete
problem.

In the past, some of these authors have investigated the space com-
plexity of decision procedures for the interpolable logics. In this context
results quite in line with the ones of [8] have been obtained in [5,6], where
proofs are given that the decision procedures for the interpolable propo-
sitional intermediate logics are O(n log n)-SPACE.

4 Other approaches

Several alternative approaches to the study of SE have stemmed from
[12] and the debate that took place on the TAG3 mailing list. Two is-
sues are mainly investigated today: alternative characterizations of SE
and extension of the concept to nested programs, i.e., those where head
and body of rules are allowed to be arbitrary formulae. Nested programs
are not considered in this article. The alternative characterizations of
Strong Equivalence for normal logic programs, however, are very enlight-
ening and very technical. Several authors, e.g. [2,14,15] and maybe others,
characterize SE in terms of equivalence of the programs w.r.t. a different
logical system, such as Pertinence and Intuitionistic logic.

Turner [20] gives an alternative characterization of strong equivalence
in terms of SE-models, which are pairs (X, Y) of consistent sets of literals
where X ⊆ Y and, for a program Π, both X and Y are closed under ΠY ,
which is the standard Gelfond-Lifschitz reduct [9] of Π relative to Y . SE-
models are shown to correspond to models in the logic of Here-and-There.
However, Turner’s is the only approach we are aware of which studies SE
within logic programming proper, although it relies, differently from this
present work, on a new model theory.

5 Conclusions

The tableau calculus for HT given in [1] and described above has been
implemented by using ANSI C language. The source code can be down-
loaded at the following URL:
http://enigma.dimequant.unimib.it/ HT/index.html.

The prover has been implemented following the proof of the com-
pleteness theorem. In order to keep the number of nodes of the proof
tables low, in our strategy first we apply the rules with one extension
(T∧,Tcl∧,T¬,Tcl¬,F∨,Fc∨,Fc → F¬,Fc¬) and, if no rule with one
extension can be applied, we apply the rules with two or more extensions
(T∨,Tcl∨,T→,Tcl→,F∧,Fc∧,F→).
3 Texas Actions group: http://www.cs.utexas.edu/users/vl/tag/

In [18] a tableau calculus for the logic here-and-there with strong
negation is described, where strong negation is treated by introducing in
the language a new connective. Although, as it is well known, by Gure-
vich’s trick one can eliminate strong negation by doubling the predicates,
in logical terms it is elegant and more complete to keep it in as a con-
nective. The calculus of [18] without strong negation is equivalent to the
one described in this paper and introduced in [1], and characterizes the
3-valued logic of Here-and-There. A straightforward translation between
the two calculi can be obtained by associating the four signs T,F,Fc

and Tcl to sets of numbers. For instance, the swff FA, that represents
non-truth of A, is represented in [18] by the pair {0, 1} of truth values
(standing for falsity and non-truth respectively). Similarly, the other signs
are translated as follows: T = {2}, Tcl = {1, 2} and Fc = {0}.

Acknowledgments

We acknowledge useful discussions and much encouragement from Michael
Gelfond, Mario Ornaghi and David Pearce.

References

1. A. Avellone, M. Ferrari, and P. Miglioli. Duplication-free tableau calculi and
related cut-free sequent calculi for the interpolable propositional intermediate
logics. Logic Journal of the IGPL, 7(4):447–480, 1999.

2. P. Cabalar, 2001. Well-founded Semantics as Two-dimensional Here and There.
Proc. of AAAI Spring Symposium 2001 on Answer Set Programming (ASP2001),
pp. 15–20. AAAI Press, Tech. report SS-01-01..

3. A. Chagrov and M. Zakharyaschev, 1997. Modal Logic. Oxford Univ. Press.
4. C. Fiorentini and P. Miglioli, 1999. A cut-free sequent calculus for the logic

of constant domains. Tech. report, Dipartimento di Scienze dell’Informazione,
Università degli Studi di Milano.

5. G. Fiorino. An O(n log n)-space decision procedure for the propositional Dum-
mett Logic. Journal of Automated Reasoning, 27: 297-311, 2001.

6. G. Fiorino. Space-efficient Decision Procedures for Three Interpolable Proposi-
tional Intermediate Logics. Journal of Logic and Computation, Vol 12, Issue 6,
2002.

7. M.C. Fitting, 1969. Intuitionistic Logic, Model Theory and Forcing. North-
Holland.

8. J. Hudelmaier, 1993. An O(n log n)-space decision procedure for intuitionistic
propositional logic. Journal of Logic and Computation, 3(1):63–75.

9. Gelfond, M. and Lifschitz, V., 1988. The stable model semantics for logic pro-
gramming. Proc. of 5th ILPS conference, MIT Press, pp. 1070–1080.

10. Gelfond, M. and Lifschitz, V., 1991. Classical negation in logic programs and
disjunctive databases. New Generation Computing, pp. 365–387.

11. T. Janhunen, T. and E. Oikarinen, 2002. Testing the Equivalence of Logic Pro-
grams under Stable Model Semantics. In Proc. of JELIA 2002, 8th European Conf.
on Logics in Artificial Intelligence, Springer-Verlag LNAI 2424, pp 493–504.

12. Lifschitz, V., Pearce, D. and Valverde, A., 2001. Strongly Equivalent logic pro-
grams. ACM Transactions on Computational Logic, 2:526–541.

13. Marek, W., and Truszczyński, M., 1999. Stable models and an alternative logic
programming paradigm, In: The Logic Programming Paradigm: a 25-Year Per-
spective, pp. 375–398 Springer-Verlag.

14. Osorio, M., Navarro, J. A. and Arrazola, J., 2001. Equivalence in Answer Set
programming. Annals of pure and Applied Logic, 108:1-3, pp. 153–188. Also in
Proc. of LOPSTR 2001, pp. 18–28.

15. Otero, R., 2001. Pertinence Logic Characterization of Stable Models. Proc. of
AAAI Spring Symposium 2001 on Answer Set Programming (ASP2001), pp. 153–
159. AAAI Press, Tech. report SS-01-01..

16. Pearce, D., 1997. A New Logical Characterization of Stable Models and An-
swer Sets. Non-Monotonic Extensions of Logic Programming, pp. 55–70, Springer-
Verlag LNAI 1216.

17. Pearce, D., 1999. Stable Inference as Intuitionistic Validity. J. of Logic Program-
ming, 38, pp. 79–91.

18. Pearce, D., de Guzmán, I. P., Valverde, A. 2000. A Tableau Calculus for Equilib-
rium Entailment. In R. Dyckhoff, editor, Proceedings of the International Con-
ference on Automated Reasoning with Analytic Tableaux and Related Methods,
volume 1847 of LNCS, pages 352–367. Springer-Verlag, 2000.

19. Web location of the most known ASP solvers.
CCALC: http://www.cs.utexas.edu/users/mcain/cc
Cmodels: http://www.cs.utexas.edu/users/tag/cmodels.html
DeReS: http://www.cs.engr.uky.edu/~lpnmr/DeReS.html
DLV: http://www.dbai.tuwien.ac.at/proj/dlv/
NoMoRe: http://www.cs.uni-potsdam.de/ linke/nomore/
smodels: http://www.tcs.hut.fi/Software/smodels/

20. Turner, H., 1997. Strong Equivalence for Logic Programs and Default Theories
(Made Easy). T. Eiter and W. Faber (Eds.) Logic Programming and NonMono-
tonic Reasoning. Springer-Verlag LNAI 2173, pp. 55–70.

21. Van Gelder A., Ross K.A. and Schlipf J., 1990. The Well-Founded Semantics for
General Logic Programs. Journal of the ACM 38:3.

