
Expressing Preferences Declaratively
in Logic-based Agent Languages

Stefania Costantini and Arianna Tocchio
Università degli Studi di L’Aquila

Dipartimento di Informatica
Via Vetoio, Loc. Coppito,
I-67010 L’Aquila - Italy

Email: {stefcost, tocchio }@di.univaq.it

Pierangelo Dell’Acqua
Department of Science and

Technology - ITN
Linköping University

601 74 Norrköping, Sweden
Email: pier@itn.liu.se

Abstract

Preference-based reasoning is a form of commonsense rea-
soning that makes many problems easier to express and some-
times more likely to have a solution. In this paper, we
present an approach to introducing preferences among ac-
tions in logic-based agent-oriented languages. These prefer-
ences are local to the rule where they are defined. To the best
of our knowledge, no similar approach has been proposed be-
fore, and cannot be easily simulated by means of preferences
expressed in a global way. The approach is exemplified by
choosing preferred actions to be performed in reaction to an
event.

Introduction
Expressing and using preferences constitutes a form of com-
monsense reasoning for several reasons. Intuitively, it sim-
ulates a skill that every person takes for granted. From the
point of view of knowledge representation, many problems
are more naturally represented by flexible rather than by
hard descriptions. Practically, many problems would not
even be solvable if one would stick firmly on all require-
ments. Consider for instance the well-known situation of
persons who would not like to be seated at the same table
with somebody they hate, and prefer to be seated together
with somebody they like: preferring instead of absolutely
expecting make more instances of the problem solvable.

Intelligent agents perform advanced activities such as ne-
gotiation, bargaining, etc. where they have to choose among
alternatives. The choice may be supported by some kind of
preference or priorities related for instance to the agent’s ob-
jectives, the context (cooperative vs. competitive), available
resources, strategies that the agent intends to follow. Prefer-
ences are in fact an instance of those approximate concepts
that John McCarthy advocates in (McCarthy 1996) as essen-
tial on the way of machines reaching human-level AI.

Agents will in general include specialized modules and/or
meta-level axioms for applying priorities and preferences:
see for instance (Gelfond & Son 1998) for a seminal work on
prioritized defeasible reasoning. However, it can be useful
for logical agents to be able to express preferences at a more

Copyright c⃝ 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

basic linguistic level. These basic preferences can then be
employed in building more advanced high-level strategies.

At the language level, various forms of preferences can
be expressed in Answer Set Programming (ASP), which is
a recent and now well-established paradigm of logic pro-
gramming (Gelfond & Lifschitz 1988; Lifschitz 1999). ASP
is not based on answering queries, but rather it is based on
computing sets of consequences of a given program (“An-
swer Sets”) that fulfill the underlying semantics. In ASP,
the basic mechanism for managing preferences is that of
computing the Answer Sets and then choose the “preferred”
ones. Below we will review relevant existing approaches
on preference reasoning. Some of them are based on estab-
lishing priorities/preferences among atoms (facts), and typ-
ically introduce some form of disjunction in the head (con-
clusion) of rules. In contrast, other approaches express pri-
orities among rules.

Our proposal is aimed at allowing agents defined in any
rule-based computational logic language to express prefer-
ences concerning either which action they would perform in
a given situation, or, in perspective, which goal they would
pursue at a certain stage. Since actions are often performed
in reaction to events and goals are set in accordance to some
internal conclusion that has been reached, we propose to in-
troduce disjunction in the body (conditions) of reactive rules
(that specify how to cope with events). If the body of a re-
active rule contains a disjunction among two or more ac-
tions, the preferred one will be chosen according to pref-
erence condition expressions, as (following (Sakama & In-
oue 2000)) priorities may be conditional. These expressions
are local to the rule where the disjunction occurs, so that
we achieve a better elaboration tolerance (McCarthy 1998)
by allowing different preferences among the same actions in
different contexts.

If agents evolve with time and enlarge their knowledge
and experience, choices performed according to priorities
may dynamically change according to the agent evolution.
In fact, preference condition expressions may contain refer-
ences to the agent past experience, and then the preferred
choice may be different at different stages.

In agent languages that are not based on Answer Set
Programming, one cannot select the preferred model(s) by
means of a filter on possible models. Then, other techniques

are needed in order to provide a semantic account. Recently,
a general semantic framework for logical rule-based agent-
oriented languages has appeared in the literature (Costan-
tini & Tocchio 2006): in this framework, an agent is under-
stood as an entity coping with events. Events of any kind
are considered as making a change in the agent program,
which is a logical theory, and in its semantics (however de-
fined). For such a change to be represented, the effect of
an event is understood as the application of a corresponding
program-transformation function. Thus, agent evolution is
seen as program evolution, with a corresponding semantic
evolution.

This semantic framework can be applied to the approach
presented here by adapting the proposal of the split pro-
grams introduced in (Brewka 2002). A split program is a
version of the given program obtained by replacing each dis-
junction by one of its options. Then, at each step where an
agent must prefer one option out of a disjunction of possibil-
ities, we would have a set of possible evolutions, each corre-
sponding to a split program. Among them, the preferred one
(according to the present conditions) is taken, while all the
others are pruned.

In the rest of the paper, we first briefly review previous
related work on preferences and discuss how it relates to
ours. Then, we introduce the approach at more length, and
discuss its semantics. Finally, we close with some remarks
and proposals of future work.

Previous Related Work
The reader may refer to (Delgrande et al. 2004) for a discus-
sion of many existing approaches to preferences. The main
distinction is among those that define priorities/preferences
among atoms (facts), and typically introduce some form of
disjunction in the head of rules, and those that express in-
stead priorities among rules. Among the latter ones, we
mention (Kakas & Moraitis 2006) that applies preferences
among rules in negotiating agents based on argumentation,
so as to tune argumentations according to changing contexts.

The approach of (Sakama & Inoue 2000) considers gen-
eral extended disjunctive programs where a rule has the syn-
tax:

L1| . . . |Lk|notLk+1| . . . |notLk+h ← Body

where “|” represents disjunction and not is negation as
failure under the Answer Set semantics. A preference, or
priority, between two ground literals e1, e2 is expressed in
the form e1 ≺ e2. An answer set S2 of a given program is
preferable onto another answer set S1 iff S2 \ S1 contains
an element e2 whose priority is higher than some element e1
in S1 \ S2, and the latter does not contain another element
e3 whose priority is strictly higher that e2. Then, preferred
answer sets (or p-answer sets) are a subset of the traditional
ones, that can be seen as a special case corresponding to
empty priorities.

Basic PLP is exploited in (Sakama & Inoue 2000) so as to
express priorities not only between facts, but also between
more general forms of knowledge. The approach allows
many forms of commonsense reasoning to be modeled.

An interesting application is that of priority with precon-
ditions. For instance, borrowing the example from (Sakama
& Inoue 2000), the situation where a person drinks tea or
coffee but she prefers coffee to tea when sleepy can be rep-
resented as follows (in a prolog-like syntax):

tea | coffee.
tea ≺ coffee :- sleepy .

This program can be translated in a standard way in plain
PLP and, assuming that sleepy holds, has the p-answer set
{sleepy , coffee}.

In LPODS (Brewka 2002), one can write expressions such
as A × B in the head of rules, where the new connective
× stands for ordered disjunction. The expression intuitively
stands for: if possible A, but if A is impossible then (at least)
B. If there are several disjuncts, the first one represents the
best preferred option, the second one represents the second
best option, etc. The following is an example where a person
who wishes to spend the evening out and has money prefers
to go to theatre, or else (if impossible) to go to the cinema,
or else (if both previous options cannot be taken) to go to
dine at a restaurant.

theatre × cinema × restaurant :-
want to go out , have money .

For selecting the preferred answer set(s) of a program P ,
one obtains the possible split programs of P , where a split
program P ′ is obtained from P by replacing each disjunctive
rule by one of its options. Then, the answer sets of P are
taken to be the answer sets of the split programs. To choose
preferred ones given that there may be several disjunctions,
a notion of degree of satisfaction of disjunctive rules must
be defined, that induces a partial ordering on answer sets.
Preferred answer sets are those that satisfy all rules of P to
the better degree.

In the approach that we propose here for logical agents,
a disjunction among two or more actions may occur in the
body of a reactive rule that specifies the response to an event.
The intended meaning is the following:

• preference condition expressions, which are local to the
rule where the disjunction occurs, establish which action
is preferred under which conditions;

• precondition of actions state (globally) in which cases an
action can be actually performed, i.e., when it is feasible;

• having to choose, the agent should perform the best pre-
ferred feasible action.

To the best of our knowledge, the approach that we pro-
pose here of introducing conditional preferences in the body
of logical rules is novel, and no similar other approach can
be found in the literature. Our approach cannot be easily
simulated by using preferences in the head. Consider in
fact that preferences defined in the head are global, while
instead, preferences expressed in the body are local to the

rule where they occur. Thus, there may be different prefer-
ences among the same actions in different contexts, which
implies a better elaboration tolerance (McCarthy 1998) as
local preferences related to managing a certain event can be
modified without affecting other aspects of the agent behav-
ior. This will be demonstrated in the following examples.

The application of preference reasoning to address the
problem of action selection in multi-agent systems is also
new. As an agent evolves in time and its knowledge changes,
preferred choices will change as well. Then, according to
the same preference structure an agent will in general prefer
differently at different stages of its life. Of course we build
upon previous work, in particular we adopt the idea of con-
ditional preferences from (Sakama & Inoue 2000) and for
the semantics we use the idea of split programs introduced
in (Brewka 2002).

The approach in more detail
The constructs that we introduce below can be easily em-
ployed in any agent-oriented languages based on logic
(horn-clause) programming, and can be adapted to rule-
based languages in general. Similarly to (Sakama & Inoue
2000), we assume the following:

• preferences are expressed between two ground facts;

• preferences are expressed explicitly by means of special
rules that may have conditions;

• the preference relation is transitive, irreflexive and anti-
symmetric.

Preferences can be defined conditionally among actions that
agents may perform. We make some preliminary assump-
tion about the agent languages we are considering. We do
not commit to any particular syntax, though we will propose
a sample one in order to introduce and illustrate examples.
We will discuss the semantics of the class of languages that
we consider in the next section. By saying “an agent” we
mean a program written in the language at hand, that be-
haves as an agent when it is put at work. We assume in
particular the following syntactic and operational features.

• The agent is able to perceive external events coming from
the environment where the agent is situated. In our sample
syntax an external event is an atom which is distinguished
by a postfix E. E.g., rainE indicates an external event.

• The agent is able to react to external events, i.e., the lan-
guage provides some kind of condition-action construct.
In our sample syntax a reactive rule will be indicated with
pE :>Body meaning that whenever the external event
pE is perceived, the agent will execute Body. There are
languages (like, e.g., the one presented in (Costantini &
Tocchio 2002)) where an agent can react to its own inter-
nal conclusions, that are interpreted as events (thus mod-
eling proactivity). We assume that the syntax for reaction
is the same in both cases. However, an internally gen-
erated event is indicated with postifix I , i.e., in the form
pI .

• The agent is able to perform actions. Actions will occur
in the agent program as special atoms. In our sample syn-
tax we assume them to be in the form qA, i.e., they are
distinguished by suffix A. E.g., open umbrellaA indi-
cates an action. Actions may have preconditions: In our
sample syntax we assume them to be expressed by rules.
The connective :< indicates that the rule defines the pre-
condition of an action. I.e., a precondition rule will be
indicated as qA :<Body, meaning that the action qA can
be performed only if Body is true. We do not cope here
with the effective execution of actions, that is left to the
language run-time support.

The proposed approach will be presented by adopting
and extending our sample syntax. In particular, a disjunc-
tion (indicated with “|”) of actions may occur in the body
of a reactive rule. Then, a rule pE :>q1A | q2A,Body.
means that in reaction to pE the agent may perform indif-
ferently either action q1A or action q2A and then it exe-
cutes Body. Preferences among actions are defined in pref-
erence condition expressions associated to a reactive rule,
and indicated by the new connective << . Then, a rule
pE :>q1A | q2A,Body :: q1A<<q2A :-Conds. means
that in reaction to pE the agent may perform either action
q1A or action q2A, but action q2A is preferred over action
q1A provided that Conds holds. I.e., if Conds is not ver-
ified then the preference is not applicable, and thus any of
the actions can be indifferently executed. In general, a dis-
junction may contain several actions, and several preference
condition expression can be expressed, provided that they re-
fer to distinct pairs of actions (for every two action, at most
one preference condition expression can be specified).

A set of preference rules define in general a partial order
among actions, where preferences are transitively applied
and actions that are unordered can be indifferently executed.
In our approach preferences are applied on feasible actions.
I.e., the partial order among actions must be re-evaluated at
each step of the agent life where a choice is possible, accord-
ing to the preconditions of the actions. The preferred actions
at each stage are those that can actually be performed and
that are selected by the preference partial order.

Example 1 Consider a person who receives an invitation to
go out for dinner. She would prefer accepting the invitation
rather than refusing, provided that the invitation comes from
nice people. She is able to accept if she has time. The in-
vitation is an external event that reaches the agent from her
external environment. Accepting or refusing constitutes the
reaction to the event, and both are actions. One of the ac-
tions (namely, accepting) has preconditions. In our sample
syntax, an agent program fragment formalizing this situation
may look as follows.

invitation dinnerE :> acceptA | refuseA ::
refuseA<< acceptA :-nice people inviting .

acceptA :< have time.

When the external event invitation dinnerE is perceived
by the agent, it can react by alternatively performing one
of two actions. The action acceptA will be performed only

if its preconditions are verified. As preferences are among
feasible actions, acceptA is preferred provided that both
have time and nice people inviting hold.

Notice that while preference condition expressions are lo-
cal to a (reactive) rule, action preconditions are global and
must be verified whenever an action is attempted.

Notice also that what the agent will do is not known in
advance, as the agent evolves in time: the invitation may ar-
rive at a stage of the agent operation when time is available,
and then the preferred action is chosen. If instead the invita-
tion (or, another future invitation) arrives when there are no
resources for accepting, then the agent will have to refuse.

Consider instead a person that receives an invitation to
a boring work meeting. She will prefer (unconditionally) to
refuse. However, she cannot do that if she does not have
an excuse to present. As we can see, preference among the
same actions varies according to the context. Also, if the
preconditions of a preferred action are not verified, a less
preferred one will have to be performed.

invitation meetingE :> acceptA | refuseA ::
acceptA<< refuseA.

refuseA :< acceptable excuse.

Another example will introduce further aspects.

Example 2 Let us now rephrase the example of the person
preferring coffee over tea if sleepy. Let us put it in a proac-
tive perspective, where the person wonders whether it is time
to take a break from working, e.g., at mid-afternoon. If so,
she will consider whether to drink tea or coffee or juice.
Moreover, in this variation the agent drinks coffee only if
she can have an espresso and drinks juice only if she can
have orange juice.

The corresponding program fragment might look as fol-
lows, where take break is an internal conclusion that trig-
gers a proactive behavior: the first rule reaches the conclu-
sion that taking a break is in order; the second rule states
what to do then, i.e., specifies a reaction to the internal con-
clusion itself (indicated in the second rule with postfix I for
“internal”). For the mechanism to be effective, take break
must be attempted from time to time, so as to trigger the
consequent behavior as soon as it becomes true.

take break :-five oclock .
take breakI :> drink teaA | drink coffeeA

| drink juiceA ::
drink teaA<< drink coffeeA :- sleepy ,
drink teaA<< drink juiceA.

drink coffeeA :< espresso.
drink juiceA :< orange.

The expected behavior is the following:

• If sleepy holds and espresso holds as well, the agent can
drink coffee (the action drink coffeeA is allowed) and
will not drink tea, which is less preferred. If orange
holds, also the action drink juiceA is allowed, and pre-
ferred over drink teaA. The agent can indifferently drink

either coffee or juice, as they are unrelated. If orange
does not hold, the agent will definitely drink coffee.

• If espresso does not hold, the agent cannot drink cof-
fee (the action drink coffeeA is not allowed). Then, if
orange holds then the agent will drink juice (the action
drink juiceA will be performed), otherwise it will drink
tea (as the action drink teaA is always allowed, not hav-
ing preconditions).

• If sleepy does not hold, there is no preference between tea
and coffee. If orange does not hold and espresso holds,
one of the two actions drink teaA or drink coffeeA can
be indifferently executed. If orange holds and espresso
holds as well, drink juiceA is preferred over drink teaA,
but as no other priority is specified, one of the actions
drink coffeeA or drink juiceA can be indifferently exe-
cuted.

Declarative Semantics of
Evolving Agents with Preferences

The evolutionary semantics proposed in (Costantini & Toc-
chio 2006) has the objective of providing a unifying frame-
work for various languages and semantics of reactive, proac-
tive logic-based agents. This semantic approach is based
upon declaratively modelling the changes inside an agent
which are determined by changes in the environment as
well as agent’s own self-modifications. The key idea is
to understand these changes as the result of the applica-
tion of program-transformation functions. In this view, a
program-transformation function is applied upon reception
of an event, internal or external to the agent. In fact, the per-
ception of an event affects the program defining the agent:
for instance, an event can be stored as a new fact in the
program. Similarly, actions which are performed can be
recorded as new facts. All the “past” events and actions will
constitute the “experience” of the agent.

Recording each event or action or any other change that
occurs inside an agent can be semantically interpreted as
transforming the agent program into a new program, that
may procedurally behave differently than before: e.g., by
possibly reacting to the event, or drawing conclusions from
past experience. Furthermore, the internal event correspond-
ing to the decision of the agent to undertake an activity trig-
gers a more complex program transformation, resulting in
version of the program where the corresponding intention is
somewhat “loaded” so as to become executable.

Then, every agent will be equipped with an initial pro-
gram P0 which, according to these program-transformation
steps (each one transforming Pi into Pi+1), gives rise to a
Program Evolution Sequence PE = [P0, ..., Pn]. The pro-
gram evolution sequence will have a corresponding Seman-
tic Evolution Sequence ME = [M0, ...,Mn] where Mi is
the semantic account of Pi according to the specific lan-
guage and the chosen semantics. The couple ⟨PE; ME⟩
is called the Evolutionary Semantics of the agent program
PAg, corresponding to the particular sequence of changes
that has happened. The evolutionary semantics represents
the history of an agent without having to introduce the con-

cept of “state”.
Various agent languages and formalisms will influence the

following key points:

1. When a transition from Pi to Pi+1 takes place, i.e., which
are the external and/or internal factors that determine a
change in the agent.

2. Which kind of transformations are performed.

3. Which semantic approach is adopted, i.e., how Mi is ob-
tained from Pi. Mi can be for instance a model or an
initial algebra. In general, given a semantics S we will
have Mi = S(Pi).

A transition from Pi to Pi+1 can reasonably take place, for
instance: when an event happens; when an action is per-
formed; when a new goal is set; upon reception of new
knowledge from other agents; in consequence to the deci-
sion to accept/reject the new knowledge; in consequence to
the agent decision to revise its own knowledge. We say that
at stage Pi+1 of the evolution the agent has perceived event
ev meaning that the transition from Pi to Pi+1 has taken
place in consequence of the reception of ev. It is reasonable
to assume that at the stage Pi+1 the agent will cope with the
event by executing a selected reaction.

In our approach we perform an Initialization step by
which the program PAg , written by the programmer, is trans-
formed into a corresponding initial program P0 via some
sort of knowledge compilation. This compilation can on
one extreme do nothing, while on the other extreme it can
perform complex transformations by producing “code” that
implements language features in the underlying logical for-
malism. P0 can be simply a program (logical theory) or can
have additional information associated to it.

To give a semantic account to a program we proceed
as follows: (i) in the initialization step preferences can
be collected and preference conditions removed; (ii) P0

will not contain preference conditions, but will be asso-
ciated to a preference structure Pref where, for each re-
active rule occurring in PAg , preferences between couples
of (ground) actions are made explicit by aggregating pref-
erence condition expressions and annotating conditions1.
Then, PAg→Initialization Step⟨P0, P ref⟩

To give a semantic account to reactive rules according
to preferences, we adapt the idea of split program from
(Brewka 2002). A split program is a version of the given
program obtained by replacing a disjunction by one of its
disjuncts. In our case, whenever an agent at stage Pi of its
evolution has perceived an (either external or internal) event,
say pE, it will react to it. However, if there is a disjunction
of actions in the body of the corresponding reactive rule,
then the agent may react in more that one way. The different
ways of reacting are represented by different split programs,
each one representing an alternative.

1This is by no means a trivial task if preferences are partially
ordered. For possible solutions the reader may refer for instance to
(Dell’Acqua & Pereira 2005; Junker & Kiessling 2006; Pini et al.
2006)

Definition 1 Let PAg be an agent program that has been
transformed into a program P0 (associated with a prefer-
ence structure Pref) by the initialization step. Let Pi be
the program obtained from the evolution of P0 at the i-
th step, corresponding to the perception of event pE. Let
pE :>Body be the corresponding reactive rule in Pi, where
a disjunction of actions occurs in Body. A split program P ′

i
is obtained by replacing the disjunction with one of its op-
tions.

Referring to the program of Example 1, at the initializa-
tion step it is transformed into:

invitation dinnerE :> acceptA | rejectA.
acceptA :< have time.

where the preference refuseA<< acceptA :-
nice people inviting is recorded in the structure Pref , in
association to the reactive rule. Then, the perception of
invitation dinnerE will give two split programs: the first
one ϕ1 where the body of the reactive rule contains only
acceptA and the second ϕ2 where the body of the reactive
rule contains refuseA. We will have a set {P 1

i , . . . , P
k
i }

of split programs corresponding to the number k of actions
occurring in the disjunction. Assuming that events are
considered one at a time (i.e., an evolution step copes
with a single event), at each stage split programs will be
relative to a single reactive rule, and will correspond to a
set {M1

i , . . . ,M
k
i } where M j

i is the semantics of P j
i . We

say that a split occurs at stage Pi of the program evolution
whenever at that stage the incoming event is related to a
reactive rule with a disjunction of actions in its body. The
preferred split programs are those whose semantics contain
the preferred actions.

Definition 2 Let PAg be an agent program that has been
transformed into a program P0 by the initialization step,
and let Pref be the preference structure that has been as-
sociated to the program. Let Pi correspond to a step of the
evolution of P0, where a split occurs. Given two split pro-
grams P r

i and P s
i obtained from Pi by splitting a disjunction

d ≡ act1A | . . . | actkA, then P r
i is preferred over P s

i if the
following conditions hold:

• the semantics Mr
i of P r

i contains actrAi;
• actrAi is preferred over actsAi according to Pref , which

implies that Mr
i entails the conditions of the related pref-

erence condition expressions.

Notice that both Mr
i and Ms

i may not contain the cor-
responding action (actrAi and actsAi respectively), in case
its preconditions are false. Then, a split program is preferred
upon another one if (i) its semantics entails the related action
and (ii) either the semantics of the other one does not entail
the related action, or the former action is preferred and the
conditions for preference satisfied.

At each step where a split occurs we have a set of possible
evolutions, each corresponding to a split program. Among
them the preferred one (according to the present conditions)
is taken, while all the others are pruned. As mentioned be-
fore, given similar situations at different stages of the agent

life, different options can be taken, according to the present
assessment of the agent knowledge. In the previous exam-
ple, ϕ1 will be preferred to ϕ2 whenever it actually entails
acceptA.

We can have a unique most preferred split program P b
i if

Pref is a total order with respect to the actions over which
we split, or we may have more than one equally preferred
split programs. Any of them can be indifferently selected.

Definition 3 Let Pi be a stage of the program evolution se-
quence where a split occurs. We let Pi+1 be any of the most
preferred split programs.

Concluding Remarks
In this paper we have presented an approach to expressing
preferences among actions and in logical agents. The ap-
proach builds on previous relevant work related to answer
set programming, but is rephrased for reactive and proactive
agents that evolve in time. Other approaches in computa-
tional logic that are related to the present one and to which
we are indebted are (Alferes, Dell’Acqua, & Pereira 2002;
Dell’Acqua & Pereira 2003;), where preferences and up-
dating preferences are coped with in the context of a more
general approach to updating logic programs. The examples
that we have presented basically refer to the DALI language
(Costantini & Tocchio 2002; 2004), in which the present
proposal is being implemented and will be experimented.

Our next research aim is to extend the possibility of ex-
pressing preferences to all kinds of subgoals occurring in
the body of logical rules, instead of coping with actions only.
Another important objective is to extend the approach so as
to be able to express preferences among agent goals (objec-
tives to reach). Actually in fact, a plan for reaching an ob-
jective can be seen as divided into: (i) a preliminary check
stage, where feasibility of subsequent actions is checked (are
the tickets available? Do I have the money? Do my friends
accept to join me? May I rent a car?); (ii) an operative stage,
where actions that influence the environment (and in general
cannot be retracted, or at least not so easily) are performed.
The first stage can be seen as a feasibility stage for setting an
objective. Then, if there is a disjunction of objectives in the
body of a rule, we intend to make an agent able to choose
the most preferred feasible one.

References
Alferes, J. J.; Dell’Acqua, P.; and Pereira, L. M. 2002.
A compilation of updates plus preferences. In Logics in
Artificial Intelligence, Proc. of the 8th Europ. Conf., JELIA
2002, LNAI 2424, 62–74. Springer-Verlag, Berlin.
Brewka, G. 2002. Logic programming with ordered dis-
junction. In Proc. of AAAI-02, Edmonton, Canada.
Costantini, S., and Tocchio, A. 2002. A logic programming
language for multi-agent systems. In Logics in Artificial
Intelligence, Proc. of the 8th Europ. Conf., JELIA 2002,
LNAI 2424. Springer-Verlag, Berlin.
Costantini, S., and Tocchio, A. 2004. The dali logic pro-
gramming agent-oriented language. In Logics in Artificial

Intelligence, Proc. of the 9th European Conference, Jelia
2004, LNAI 3229. Springer-Verlag, Berlin.
Costantini, S., and Tocchio, A. 2006. About declarative
semantics of logic-based agent languages. In Baldoni, M.,
and Torroni, P., eds., Declarative Agent Languages and
Technologies, LNAI 3229. Springer-Verlag, Berlin. Post-
Proc. of DALT 2005.
Delgrande, J.; Schaub, T.; Tompits, H.; and Wang, K.
2004. A classification and survey of preference handling
approaches in nonmonotonic reasoning. Computational In-
telligence.
Dell’Acqua, P., and Pereira, L. M. Preferential Theory Re-
vision. J. of Applied Logics. Special issue: Formal and
Computational Epistemology. To appear in 2006.
Dell’Acqua, P., and Pereira, L. M. 2003. Preferring and up-
dating in logic-based agents. In Web-Knowledge Manage-
ment and Decision Support, LNAI 2543. Springer-Verlag,
Berlin. 70–85. Selected Papers from the 14th Int. Conf. on
Applications of Prolog (INAP).
Dell’Acqua, P., and Pereira, L. M. 2005. Preference Re-
vision via Declarative Debugging. In Bento, C.; Cardoso,
A.; and Dias, G., eds., Progress in Artificial Intelligence,
Procs. 12th Portuguese Intl.Conf. on Artificial Intelligence
(EPIA’05), LNAI 3808, 29–42. Springer-Verlag.
Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Proc. of 5th ILPS
conference, 1070–1080.
Gelfond, M., and Son, T. C. 1998. Reasoning with pri-
oritized defaults. In Proc. of the 3rd Int. Works. on Logic
Programming and Knowledge Representation, LNAI 1471,
164–223. Springer-Verlag, Berlin.
Junker, U., and Kiessling, W., eds. 2006. Proc. of multidis-
ciplinary ECAI06 Workshop about Advances on Preference
Handling.
Kakas, A., and Moraitis, P. 2006. Adaptive agent negoti-
ation via argumentation. In Proc. of the 5th International
Joint Conf. on Autonomous Agents and Multi-Agent Sys-
tems (AAMAS’06).
Lifschitz, V. 1999. Answer set planning. In Proc. of ICLP
’99 Conf., 23–37. The MIT Press. Invited talk.
McCarthy, J. 1996. From here to human-level ai. In Proc.
of the Fifth Int. Conf. on Principles of Knowledge Repre-
sent. and Reasoning (KR’96). Invited talk.
McCarthy, J. 1998. Elaboration tolerance. In
Proc. of Common Sense’98. Available at http://www-
formal.stanford.edu/jmc/ elaboration.html.
Pini, M. S.; Rossi, F.; Venable, K.; and Walsh, T. 2006.
Incompleteness and incomparability in preference aggrega-
tion. In Proc. of multidisciplinary ECAI06 Workshop about
Advances on Preference Handling.
Sakama, C., and Inoue, K. 2000. Prioritized logic pro-
gramming and its application to commonsense reasoning.
Artif. Int. 123(1-2):185–222.

